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Abstract

Background: Competitive programming platforms such as Leet-
Code, Codeforces, and HackerRank provide challenges to evaluate
programming skills. Technical recruiters frequently utilize these
platforms as a criterion for screening resumes. With the recent
advent of advanced Large Language Models (LLMs) like ChatGPT,
Gemini, and Meta Al there is a need to assess their problem-solving
ability on the programming platforms. Aims: This study aims to
assess LLMs’ capability to solve diverse programming challenges
across programming platforms with varying difficulty levels, pro-
viding insights into their performance in real-time and offline sce-
narios, comparing them to human programmers, and identifying
potential threats to established norms in programming platforms.
Method: This study utilized 98 problems from LeetCode and 126
from Codeforces, covering 15 categories and varying difficulty lev-
els. Then, we participated in nine online contests from Codeforces
and LeetCode. Finally, two certification tests were attempted on
HackerRank to gain insights into LLMs’ real-time performance.
Prompts were used to guide LLMs in solving problems, and iter-
ative feedback mechanisms were employed. We also tried to find
any possible correlation among the LLMs in different scenarios. Re-
sults: LLMs generally achieved higher success rates on LeetCode
(e.g., ChatGPT at 71.43%) but faced challenges on Codeforces. While
excelling in HackerRank certifications, they struggled in virtual
contests, especially on Codeforces. Despite diverse performance
trends, ChatGPT consistently performed well across categories, yet
all LLMs struggled with harder problems and lower acceptance
rates. In LeetCode archive problems, LLMs generally outperformed
users in time efficiency and memory usage but exhibited moderate
performance in live contests, particularly in harder Codeforces con-
tests compared to humans. Conclusions: While not necessarily
a threat, the performance of LLMs on programming platforms is
indeed a cause for concern. With the prospect of more efficient
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models emerging in the future, programming platforms need to
address this issue promptly.
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1 Introduction

Programming platforms, also known as online judges [49], such
as Codeforces!, LeetCode?, and HackerRank?>, are widely used as
tools for developing and demonstrating programming skills. Suc-
cess on these platforms often leads to recognition within the pro-
gramming community, as programmers earn scores based on their
performance [3]. Moreover, technical recruiters, including top com-
panies, frequently use competitive programming as a benchmark
to evaluate candidates’ suitability for software engineering posi-
tions [15, 28]. Given the time-consuming nature of manual resume
screening, recruiters rely on automatic techniques [18, 36] that
prioritize candidates’ online programming activities to expedite the
hiring process. In academia, high performance and contributions on
these platforms can significantly influence author or study rankings
[38], showcasing expertise and innovation in the field.

In recent years, Large Language Models (LLMs) have demon-
strated promising performance in code generation [2, 10, 23, 24, 37,
46]. Additionally, companies such as OpenAl, Google, and Meta
have released powerful conversational LLMs, including ChatGPT?,
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Zhttps://leetcode.com
Shttps://www.hackerrank.com
“https://chat.openai.com
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Gemini®, and Meta AI®, which introduce a new potential for dishon-
esty in programming challenges on online platforms. This could
potentially mislead recruiters seeking skilled employees for their
companies in resume screening. Misjudgment in recruitment can
significantly hamper the operations and success of a software com-
pany. This can lead to a range of negative consequences, including
decreased productivity, increased turnover [35], and a decline in
overall company morale.

Several studies have explored the problem-solving capabilities
of LLMs on programming platforms [1, 7, 29, 40]. However, these
studies often concentrate on assessing a single platform, typically
LeetCode, or a single LLM, frequently ChatGPT, and they tend to
focus on specific programming challenges. We contend that these
findings may not generalize to other scenarios, as the capabilities
of the same LLM can vary significantly across different platforms.
Similarly, platforms may yield different results when tested with
different LLMs. Therefore, conducting comprehensive research that
encompasses a diverse range of programming challenges across
multiple online platforms and evaluating the impact of LLMs on
these platforms will be beneficial for both platform maintainers
and technical recruiters.

In this study, we investigated three types of programming chal-
lenges across multiple programming platforms using three conver-
sational LLMs — ChatGPT, Gemini [43], and Meta Al [45]. Initially,
we compiled a dataset consisting of 224 programming problems
spanning 15 categories, sourced from online judge archives. This
dataset comprised 98 problems from LeetCode and 126 from Code-
forces. Subsequently, we engaged in nine virtual contests, encom-
passing a total of 49 problems on Codeforces and LeetCode, to
replicate real-time programming conditions. Additionally, we com-
pleted two certification tests on HackerRank, each comprising four
problems in real-time settings.

To the best of our knowledge, this is the first attempt to explore
the impact of different LLMs on programming platforms by analyz-
ing varied programming challenges across different platforms. Our
key contributions include the following:

(1) Evaluation of LLMs’ problem-solving abilities across a range
of programming challenges from judge archives and online
contests.

(2) Analysis of variations in LLMs’ performance across differ-
ent problem dimensions, such as category, difficulty level,
acceptance rate, and programming language.

(3) Comparison of LLMs’ problem-solving performance with
that of human programmers, with implications for online
judging systems and recruiters.

(4) Comparative analysis of LLMs’ performance, examining sig-
nificant differences in problem-solving abilities across vari-
ous LLMs.

(5) Provision of a comprehensive replication package”.

The rest of the paper is organized as follows. Section 2 provides
background information for our study. Section 3 describes related
works. Section 4 outlines the methodology. Sections 5 and 6 present,
analyze and discuss our findings. Section 7 lists the implications of

Shttps://gemini.google.com/app
Shttps://www.meta.ai/
"https://github.com/srlabUsask/LLM_Threat_Programming_Platforms
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our study. Section 8 states the limitations of our study. Finally, Sec-
tion 9 concludes the study and suggests future research directions.

2 Background

2.1 LLMs for Code Generation

LLMs have seen rapid development, with models like CodeGen [32],
StarCoder [21], WizardCoder [25], CodeT5 [48], CodeT5+ [47], and
Incoder [12] specifically designed for code generation. However,
these models lack plug-and-play features, requiring a certain level
of expertise for downloading and utilization. Conversely, some
LLMs, such as GitHub Copilot8 and Amazon CodeWhispererg, are
seamlessly integrated into developers’ IDEs as code assistants.

In this study, we focus on conversational LLMs only, which are
easily accessible without much expertise. By conversational LLMs,
we refer to online browser versions like ChatGPT, Gemini, and
Meta Al which enable users to interact with them through prompts
and foster conversational interactions.

2.2 Reasoning With LLMs

Solving complex problems on programming platforms necessitates
human reasoning and logical analysis. This involves devising logical
pathways while considering various scenarios and learning from er-
ror feedback provided by the platforms. Wei et al. [50] demonstrated
that LLMs can effectively address challenging reasoning tasks by
systematically guiding their logic through chain-of-thought prompt-
ing. This approach has notably enhanced mathematical problem-
solving skills at the high school level.

In our problem-solving approach (Section 4.4), we adopt a similar
chain-of-thought prompting strategy with LLMs, providing them
with error feedback to facilitate improved reasoning.

2.3 Online Judge

Programming platforms like Codeforces, LeetCode, and Hacker-
Rank, also known as online judges, assess submitted programming
solutions. These platforms host various problem types, each cate-
gorized under a specific problem type and requiring different skill
sets for effective resolution. For instance, the "Greedy" category
involves developing algorithms based on locally optimal choices at
each stage.

The online judge-checking system thoroughly evaluates sub-
mitted solutions to verify correctness and adherence to problem
requirements. The system issues a verdict, indicating acceptance or
rejection based on specific criteria. Verdicts typically classify errors
into four types: Time Limit Exceeded and Memory Limit Exceeded
occur when solutions exceed time or memory constraints, Com-
pilation Error results from code compilation issues, and Runtime
Error arises during code execution.

3 Related Work
3.1 ChatGPT and LeetCode Based Studies

Previous studies primarily concentrated on using ChatGPT to solve
problems from LeetCode and assessing its performance. Sakib et
al. [40] tried to solve 128 problems of LeetCode. They selected ten

8https://github.com/features/copilot
“https://aws.amazon.com/fr/codewhisperer/
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different types of problems and attempted to solve them twice. They
reported that ChatGPT solved 71.9% of their problems and could
improve solutions for the unsolved problems up to 36.7% in the
second attempt. Nascimento et al. [29] tried one LeetCode contest
and compared their results with 42 participants. They concluded
that ChatGPT improves the performance of easy and medium-level
problems compared to novice contest programmers. Ekedahl et al.
[9] also tried 90 LeetCode problems of ten types by GPT-4 version
and tried for a maximum of three times if a solution failed. They
showed that ChatGPT excels in simpler and medium-level pro-
gramming but struggles with harder challenges, showing declining
accuracy.

3.2 Comparative Studies

Several comparative studies [1, 4, 41, 42] have examined ChatGPT,
Bard (now known as Gemini), and Llama across various dimen-
sions. Ahmed et al. [1] specifically compared ChatGPT and Bard,
identifying a significant shared limitation termed "Artificial Hal-
lucinations." However, they observed that GPT-4 produces more
accurate solutions with fewer hallucinations compared to Bard.

Nikolaidis et al. [33] focused on 50 LeetCode problems, con-
cluding that ChatGPT and Copilot excel in providing Java and
Python solutions but exhibit decreased performance with C lan-
guage. Similarly, Hans et al. [14] discovered, through experiments
with 80 medium and 60 easy LeetCode problems, that ChatGPT
significantly outperforms Bard.

Recently, Coignion et al. [7] evaluated 18 LLMs for code gen-
eration efficiency using a LeetCode dataset, revealing comparable
performance with human-crafted solutions and indicating poten-
tial for future optimizations. research conducted by Nascimento
et al. [30] and Idrisov et al. [17] has compared LLMs with human
performance, highlighting certain shortcomings of LLMs.

3.3 Generative Models

Li et al. [22] introduced AlphaCode, a deep learning-based code
generation system, which achieved an average ranking within the
top 54.3% in simulated evaluations during recent Codeforces pro-
gramming competitions. OpenAI’s Codex [11] and Github’s Copilot
[8] are also capable code generation models. Chen et al. [6] eval-
uated Codex and found that it has a strong performance for easy
interview problems. Nguyen et al. [31] evaluated the suggested
codes of GitHub Copilot with LeetCode and found that it achieved
at most 57% correctness score.

In a case study, Lertbanjongngam et al. [20] found that Alpha-
Code’s performance is comparable to or sometimes worse than
humans regarding execution time and memory usage. They also
noted that AlphaCode often utilizes too many nested loops and
unnecessary variable declarations for high-difficulty problems. Fur-
thermore, they noted that AlphaCode is capable of generating entire
programs from lengthy natural language descriptions, distinguish-
ing it from Codex and GitHub Copilot.

Summary: Unlike previous research, our study seeks to offer
comprehensive insights to both programming platform maintain-
ers and technical recruiters. We achieve this by analyzing different
online judges across diverse problem categories. Our investiga-
tion spans various challenges, such as solving archived problems,
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participating in real-time virtual contests, and engaging in certifi-
cation programs. Our sole aim is to evaluate the impact of LLMs
on well-known programming platforms.

4 Methodology

This section outlines the study’s approach, detailing its aims, re-
search inquiries, data collection, and analysis procedures.

4.1 Goal

The goal of the study is described using the Goal-Question-Metric
technique [5] as follows:

Purpose: To evaluate

Issue: The impact of LLMs

Object: On programming platforms

Viewpoint: From the perspective of practitioners.

4.2 Research Questions

Based on our goal, we derive the following Research Questions
(RQs):

RQ;: How successfully can LLMs solve a diverse set of
programming challenges?

To evaluate LLMs’ problem-solving capabilities, we aim to assess
their performance across various types of programming challenges.
This research question will provide insights into how LLMs perform
when tackling problems of different complexities in both offline and
online environments. A high success rate could indicate potential
vulnerabilities in online judges, as people might exploit these judges
using LLMs. Conversely, a lower success rate would demonstrate
that online judges remain robust against LLMs.

RQ;: How does the performance of LLMs vary across dif-
ferent dimensions?

We hypothesize that LLMs will exhibit varied performance based
on problem category, difficulty level, acceptance rate, and program-
ming language. Additionally, LLMs may differ in their performance
from one another.

RQs3: How does the problem-solving performance of LLMs
compare to that of human programmers?

Investigating this question will offer insights into how the problem-
solving abilities of each LLM stack up against those of human pro-
grammers, thereby highlighting potential implications for online
judging systems.

4.3 Data Collection

4.3.1 Problem Category Selection. As of April 26, 2024, LeetCode’s
collection comprises 3125 problems spread across 71 distinct cate-
gories, while the Codeforces archive contains 9460 problems cate-
gorized into 37 distinct types. For this study, we have selected 15
popular!® categories that are present on both platforms. These cat-
egories include String (S), Two Pointers (TP), Math (M), Greedy (G),
Binary Search (BS), Combinatorics (C), Depth-First Search (DES), Di-
vide and Conquer (DC), Dynamic Programming (DP), Matrix (MA),
Sorting (SO), Number Theory (N), Shortest Path (SP), Probability
and Statistics (PS), and Tree (T).

Ohttps://en.wikipedia.org/wiki/Competitive_programming#Overview


https://en.wikipedia.org/wiki/Competitive_programming#Overview

ESEM ’24, October 24-25, 2024, Barcelona, Spain

4.3.2  Problems from Judge Archives. In LeetCode, problems are
categorized into three difficulty levels: Easy, Medium, and Hard.
Each problem also has an associated acceptance rate, indicating
the percentage of times the problem was solved compared to the
total submissions by users. Our dataset was structured based on
these difficulty levels and acceptance rates, following the approach
outlined by Sakib et al. [40]. They defined three acceptance range
tiers: High (>70%), Medium (>=30% and <=70%), and Low (<30%).
The goal was to include at least one problem from each of the
15 categories, covering different difficulty levels and acceptance
ranges. By following this methodology, we compiled a set of 98
problems, as depicted in TABLE 1.

Codeforces does not organize problems by difficulty levels or
display acceptance rates. Instead, it assigns ratings'! to indicate
complexity and solution frequency. In our study, we classified rat-
ings into Easy (800-1200), Medium (1201-1700), and Hard (exceeding
1700). To identify problems with High, Medium, and Low accep-
tance rates, we sorted them based on successful solutions and chose
one problem per rate category. This process resulted in a total of
126 problems (TABLE 1) selected for our study.

4.3.3  Online Contests. In addition to the problems obtained from
judge archives, we actively participated in the latest online contests,
particularly on platforms like Codeforces and LeetCode. Codeforces
hosts various types of contests, ranging from Division 1 (the most
challenging) to Division 4 (less challenging), along with unrated Ed-
ucational contests. We selected five recent contests from Codeforces,
representing each contest type, and competed in them virtually.
Virtual contests provide a real-time competition experience against
participants worldwide within a timed setting.

Moreover, we engaged in LeetCode’s weekly and biweekly con-
tests, totaling four recent contests, with two for each contest type,
through virtual participation. This effort resulted in our involve-
ment in a total of nine online contests for our study.

4.3.4  Certification Tests. We opted for HackerRank for certifica-
tion tests, considering its well-established reputation as a reliable
platform for assessing problem-solving skills through certifications.
These tests simulate real-time contests, presenting participants with
a series of problems to solve within specified time constraints. How-
ever, unlike our approach with Codeforces and LeetCode, where
we selected problems from their archives, we did not directly solve
any problems from HackerRank’s archive for this study. Instead,
we undertook two problem-solving-based certification tests on the
platform. Further details about these tests are provided in TABLE 2.

4.4 Solving Problems

We utilized open-source, free conversational language models such
as ChatGPT-3.5, Gemini 1.0 Pro, and Meta Al for our study. To
conduct our experiment using three different conversational LLMs,
we require a standardized prompt structure. A prompt serves as a
set of instructions given to an LLM, programming it by customiza-
tion and/or enhancing its capabilities [51]. Following the approach
outlined in a recent study [16], we closely followed the guidelines!?
provided by OpenAl, as detailed in their documentation on prompt

"https://en.wikipedia.org/wiki/Codeforces#Rating_system
2https://platform.openai.com/docs/guides/prompt-engineering
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engineering to optimize the prompts to get better results from the
LLMs.

Each problem on these platforms comes with its own constraints
regarding memory usage and execution time. These constraints
establish the parameters within which a solution must operate. This
means that even if a solution is technically correct, it will not be
accepted if it exceeds the specified time limit or consumes more
memory than allowed. The prompts for solving these problems
had to be formatted differently based on the specific requirements
of each online judge. For instance, on Codeforces, the problem
descriptions typically start by outlining the time and memory limit
constraints, followed by a detailed problem description. Solutions
on this platform are not required to be written within predefined
functions; instead, a complete solution is expected from start to
finish. An example of such a prompt is illustrated in the upper part
of Figure 1.

Conversely, platforms like LeetCode and HackerRank necessi-
tate solutions to be written within specific predefined functions
provided by the platform. Additionally, these platforms incorporate
time and memory limit constraints within the problem description
itself. This difference in approach results in distinct prompt designs,
as depicted in the lower part of Figure 1 compared to Codeforces.
We chose C++ as the primary language for our study because com-
petitive programmers commonly use it for problem-solving [16].

Codeforces

Write a C++ solution which will not exceed t
second time limit and m megabytes memory
limit per test, for the following problem:
“Problem Description”.

LeetCode & HackerRank

“Problem Description”, Now complete the
below C++ function for the stated problem
above, “Function Body”.

Figure 1: Prompt used for different platforms

After receiving a solution from an LLM, we submitted it to the rel-
evant judges to determine whether it would be accepted or rejected.
Rejection could occur for various reasons such as Wrong Answer,
Time Limit Exceeded, Memory Limit Exceeded, Compilation Error,
or Runtime Error. If rejected, we provided feedback to the LLMs, as
outlined in Madaan et al. [26], which included specific error details
to help them address the issues. Following this feedback, the LLMs
then generated an alternative solution, incorporating the insights
gained from our guidance.

The workflow of our methodology is illustrated in Figure 2. We
iteratively employed few-shot prompting to tackle a problem. If an
LLM consistently produced incorrect solutions for k consecutive
attempts, we stopped the process. In our experiment, we set the
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Table 1: Cross Platform Dataset Across Problem Domains and Difficulty Levels

LeetCode | Codeforces

Difficulty | Acceptance | S TP M G BS C DFS DC DP MA SO N SP PS T
High 101 1)1 1)1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 oOf1 0|1 1|1
Easy Medium 1/t 1)1 11 1|t 1|1 o1 1|1 1]o 1|1 1]0 1|1 1|1 ©0]0 Of1 1|1
Low 111 o1 11 1|1 0|1 of1 01 0|0 01 0[]0 01 0|1 0|1 0|1 0]0
High 101 1)1 1)1 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 0|0 0[]0 OJ0 1|1
Medium | Medium 101 1)1 1)1 1)1 1|1 1|t 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1]1 1]1
Low 101 1)1 1|1 1|1 1|1 of1 1|1 0|1 1|1 of1 1|1 1|1 1|1 0|1 01
High 11 0|1 o1 1|1 1|1 0|1 1|1 oOf1 0|1 1] [1 0|1 11 0|1 01
Hard Medium 11 11 11 1]1 11 11 1)1 1|1 1| 11 1|1 1)1 1]1
Low 11 1)1 1]1 1|1 11 0|1 1)1 1]1 1|1 111 1]1 o1 1|1
Total Problems 919 719 8|9 9|9 7]9 5[9 7|9 6|7 719 7|7 8|9 6|8 5[7 2|8 5|8
Table 2: HackerRank Data |; !]
Certification Name Duration | Problems lPrompt o LLMs
Problem Solving (Basic) 150 minutes 2
Problem Solving (Intermediate) | 150 minutes 2
value of k to 5, indicating that we attempted each problem five c Gemini Ct?iﬁ Mgl
times before discontinuing the process. S
For both online and offline problem-solving, we directly copied g lSolution
the problem descriptions from the online judges and organized them £
according to our predefined prompts before inputting them into the g m
LLMs. Once a solution, comprising both explanations and code was I
generated, we extracted our desired implementation. Furthermore, s
we post-processed error information to streamline the data before i Submit
re-prompting the LLMs. g
Concerning HackerRank certification tests, we faced limitations
when attempting to copy the problem descriptions directly from
the platform. To overcome this obstacle, we employed a third-party
tool!? for image-to-text conversion. This involved capturing the Verdict
problem description image, converting it to text using the tool, and
subsequently adapting it to fit our prompt structure. 234
Q Accepted
5 Results S
5.1 RQ;: Success Rate .

Out of the 98 problems selected from the LeetCode archive, Chat-
GPT successfully solved 70, accounting for 71.43% of the total prob-
lems. Meta AT’s success rate was 58.16%, solving 57 problems, while
Gemini solved 67, achieving a success rate of 68.37%.

For the 126 problems from Codeforces, ChatGPT, Meta Al, and
Gemini solved 34, 21, and 10 problems, respectively, resulting in
success rates of 26.98%, 16.67%, and 7.94%. ChatGPT outperformed
both Gemini and Meta Al across both platforms, while Gemini and
Meta Al showed varying performance depending on the platform.

The results of our experiment in online contests are shown in
TABLE 3. We aimed to cover all contest types by participating
in nine virtual contests on LeetCode and Codeforces. We have

Bhitps://www.imagetotext.info/
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Figure 2: Workflow of solving problems

highlighted the best results achieved out of the three LLMs we used.
Across 9 online contests, there were 49 problems in total, but the
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Table 3: Codeforces (Cf) and LeetCode (LC) virtual contests’
results

Contests Solved Standing
Cf - Educational 0/6
Cf - Division 4 1/7 22134/ 60343
Cf - Division 3 1/8 16324 /53980
Cf - Division 2 0/6
Cf - Division 1 0/6
LC - Weekly 1 1/4 10383/ 22688
LC - Biweekly 1 2/4 9999 / 25287
LC- Weekly 2 1/4 15801/ 29736

LC - Biweekly 2 2/4 12834/ 26241

LLMs were only able to solve 8 of them. To break it down further,
they solved only 2 out of 33 Codeforces problems and 6 out of 16
LeetCode problems.

We undertook the two certification tests on HackerRank as de-
tailed in TABLE 2, utilizing ChatGPT, Gemini, and Meta AL All
three LLMs successfully obtained Problem-Solving certifications at
the Basic and Intermediate levels. Additionally, these certificates
have been included in the replication package.

Summary RQj: On average, LLMs demonstrated
higher success rates on LeetCode, with ChatGPT
achieving a rate of 71.43%, and a moderate success rate
on Codeforces at 26.98% (ChatGPT). Although LLMs
excelled in HackerRank certifications, they encoun-
tered difficulties during virtual contests, particularly
on Codeforces.

5.2 RQ;: Performance Variation

Figure 3 illustrates the performance of various LLMs across 15
problem categories. It is evident that ChatGPT consistently achieved
higher success rates in the first 11 categories. Conversely, Meta Al
demonstrated superior performance in Number Theory (N) and
Probability and Statistics (PS). On average, Gemini outperformed
Meta Al Notably, Meta Al encountered difficulties in six categories,
where it registered the lowest success rates.

TABLE 4 illustrates how problems solved by difficulty and ac-
ceptance rate were distributed among the three LLMs. ChatGPT,
Gemini, and Meta showed their strongest performance when the
problems were easy and had a high acceptance rate. However, their
performance noticeably declined as the difficulty of the problems
increased to medium and hard, and the acceptance rate decreased
to medium and low.

We conducted an experiment to see if the programming lan-
guage used affects an LLM’s problem-solving ability. We tackled
98 LeetCode problems from TABLE 1 using ChatGPT, using both
C++ and Python separately. We followed identical procedures for
both of the programming languages. The results showed that 70
problems were solved successfully using C++ and 67 with Python.
We then conducted a chi-square [27] test of independence, with the
null hypothesis being that programming language does not impact
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LLM performance. The resulting p-value was 0.76, which exceeds
the significance level of 0.05. This means we failed to reject the
null hypothesis, indicating that LLMs demonstrate no significant
difference in performance when employing different programming
languages.

Summary RQ;: LLMs display diverse performance
trends. ChatGPT consistently succeeds across cate-
gories, Meta Al shines in Number Theory and Prob-
ability, and Gemini generally outperforms Meta AL
However, all LLMs struggle with harder problems
and lower acceptance rates. Statistical tests confirmed
that there is no noticeable difference in performance
when employing different programming languages
with LLMs for problem-solving.

5.3 RQs;: Human Compatibility

LeetCode offers valuable insights into participants’ accepted so-
lutions, providing a comparative analysis of their performance
regarding time and memory constraints. Figure 4 illustrates the
percentage by which LLMs’ performance exceeds that of users in
terms of time efficiency and memory usage across the 98 problems
detailed in TABLE 1.

Specifically, Gemini exhibited higher time efficiency, outperform-
ing 65.79% of the users. Conversely, Meta Al showcased superior
memory usage, surpassing 54.29% of the users, outperforming both
Gemini and LeetCode. On average, LLMs outperformed 63.10% of
users in time efficiency and 51.08% of users in memory usage.

However, unlike LeetCode, Codeforces does not offer comparable
insights. Instead, it only provides information on the time taken to
solve a problem and the memory it consumes.

When we compared the performance of LLMs with that of hu-
mans in the online contests presented in TABLE 3, which we partic-
ipated in through LLMs, we observed varied results across different
types of contests. We collected the standings of LLMs from the
virtual contests they participated in and calculated the percentage
by which LLMs outperformed other participants in those contests.
LLMs performed moderately well in the weekly and biweekly con-
tests hosted by LeetCode, where they outperformed an average of
53.7% of users. However, their performance was poor in the more
challenging Codeforces contests (Division 1 and Division 2). They
achieved better results in less difficult contests such as Division 4
(63.32%) and Division 3 (69.76%), but struggled in the Educational
contest.

Summary RQs3: LLMs generally outperformed a sig-
nificant portion of users, demonstrating strong per-
formance in both time efficiency and memory us-
age when tested against problems from the LeetCode
archive. However, in live contests, LLMs exhibited
moderate performance in LeetCode contests but en-
countered challenges in harder Codeforces contests
when compared to humans.
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Figure 3: Success Rates Across Problem Categories

Table 4: Difficulty and Acceptance Range Wise Solved Problems by ChatGPT (C), Gemini (G), and Meta AI (M)

Difficulty Acceptance (C) Acceptance (G) Acceptance (M)
High Medium Low High Medium Low High Medium Low
Easy 23 17 2 18 16 3 22 17 3
Medium 18 18 5 8 12 7 10 14 2
Hard 8 11 1 3 8 2 4 5 1
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Figure 4: Comparison with users’ performance with LLMs in
terms of time and memory usage of LeetCode

6 Discussion
6.1 Action is Needed

Given the moderate to higher success rates of LLMs in solving
diverse programming challenges (RQ;) and their above-average
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performance compared to humans (RQ3), it is imperative for online
programming platforms to strategize how to address this trend. As
LLMs continue to evolve rapidly with the advent of larger models
and increased computational capabilities, it is foreseeable that they
may emerge as leading performers on platforms such as Codeforces
and LeetCode in the near future. If programming platforms do not
take adequate measures to protect against LLM-related threats, they
risk losing trust within the programming community.

HackerRank’s Certification tests, recognized by the program-
ming community [19], prevent users from copying problem descrip-
tions to deter cheating. However, it is evident from our methodology
(Subsection 4.4) that obtaining programming certificates listed in
TABLE 2 can be accomplished quite easily. This exposes a vulner-
ability in the system, indicating insufficient protective measures
against threats related to LLMs across different platforms.

Recent studies, such as the one by Idialu et al. [16], have demon-
strated promising outcomes in distinguishing between code au-
thored by humans and code generated by GPTs. Online program-
ming platforms can adopt similar techniques to determine code
authorship. However, their classifier is specifically designed for the
challenges posed on CodeChef. Future research endeavors could
explore the development of a multi-platform classifier with similar
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capabilities to counteract the influence of potent LLMs on various
programming platforms.

6.2 Significance of Feedback

In our methodology, we utilized a chain-of-thought prompting
approach [50] when our initial submission attempts (k=1) were not
accepted by the online judges. This approach involved an iterative
process where we fed the error details received from the judges
back into the Language Model Models (LLMs) and made subsequent
attempts up to a total of five times (k=5).

Following this approach, both ChatGPT and Gemini were able
to resolve 12.24% of the 98 LeetCode problems, while 4.76% of the
126 Codeforces problems were resolved by both ChatGPT and Meta
Al The process of providing feedback from the online judge to
the LLM served as a continuous learning process. It allowed the
LLM to learn from its mistakes by understanding the specific errors
encountered, which is consistent with the findings of Tong et al.
[44] suggesting that LLMs learn from previous mistakes.

6.3 Challenges Faced by LLMs

The results of RQ; and RQ3 show that all three LLMs encountered
challenges in solving problems on Codeforces compared to Leet-
Code. To delve into the reasons, we analyzed the Division 4 contest
from Codeforces and the Weekly 1 contest from LeetCode (see
Table 3) to compare the average number of words per problem.
We found that the Codeforces contest had an average of 274.14
words per problem, while the LeetCode contest had an average of
164.25 words per problem. This suggests that LLMs might strug-
gle to understand larger problem descriptions, leading to poorer
performance on Codeforces.

30

20
15 | I |

ChatGPT Gemini Meta Al
LLM Type

Error_Type
Run Time Error
mmm Time Limit Exceeded
mmm Compilation Error
Memory Limit Exceeded

Number of Problems

—
15}

o

Figure 5: Distribution of different errors across LLMs

To gain deeper insights into the challenges encountered by LLMs
during problem-solving, we provide an analysis of error types across
different LLMs, as depicted in Figure 5. The distribution illustrates
that Gemini and Meta Al encountered the most difficulties in gener-
ating compilable solutions for the problems. Conversely, ChatGPT
struggled with producing accurate solutions within the specified
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time constraints of programming platforms. Despite these chal-
lenges, all three LLMs demonstrated considerable success in solving
problems within the prescribed memory constraints.

Additionally, among the 224 problems assessed, 35 included im-
ages in their descriptions to aid programmers in better compre-
hending the problem. Despite not incorporating these images in
the problem descriptions, ChatGPT successfully solved 60% of the
problems, while Meta Al managed to solve 42.85% of them. No-
tably, LLMs demonstrated competence even when confronted with
problems featuring images.

6.4 Number of Attempts

In our problem-solving methodology, we attempted each problem
five times (k=5). We chose this number based on the belief that it
represents an optimal balance for assessing the impact of provid-
ing feedback to LLMs. Given that our approach involves utilizing
conversational LLMs, we aimed to avoid relying on paid APIs and
instead manually solve problems through copying and pasting. Us-
ing higher values of k would have necessitated significant manual
effort and time investment. Our decision aligns with previous re-
search [9, 40], which also utilized lower values of k (<=3) in their
studies. To verify our assumption, we conducted a pilot study with
a higher k value of 10 during the Division 4 Codeforces contest.
Interestingly, this adjustment did not alter the results presented in
TABLE 3.

7 Implications

7.1 For Researchers

Our study’s findings can be used to investigate LLMs’ shortcom-
ings in complex code generation. Our results reveal that LLMs face
difficulties in generating solutions when problems in the hard and
low acceptance range are given to them. Researchers associated
with developing Al coding assistants like GitHub Copilot can in-
corporate our findings into their models to make improved coding
assistant tools that will be able to tackle difficult problem-solving
scenarios.

7.2 For Recruiters

Efforts [28] have been made to automatically gather candidates’
online programming profile information to facilitate hiring. Our
study findings indicate that LLMs perform moderately well on
programming platforms and excel in obtaining online certificates
related to programming skills. These insights provide recruiters
with a means to verify the credibility of a candidate’s online pro-
gramming profile. However, while these platforms offer valuable
information, recruiters should supplement their evaluation meth-
ods with interviews, practical assessments, or real-world projects.
This holistic approach ensures a thorough understanding of can-
didates’ skills, behaviors, and problem-solving abilities, enabling
recruiters to make more informed hiring decisions.

7.3 For Practitioners

We conducted a study to assess the effectiveness of various online
programming platforms using multiple LLMs across various pro-
gramming challenges. This study will help developers associated
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with these platforms identify any potential vulnerabilities in their
systems and work towards making their platforms more secure
against LLMs. Additionally, our findings will enable online judge
problem-setters to create programming challenges that are more
challenging for LLMs to solve.

8 Threats to Validity

Although we have diligently strived for accuracy, there is a chance
that validity threats could influence the study’s results. Utilizing
Runeson et al’s classification [39], we scrutinize multiple factors
that might jeopardize the study’s integrity.

8.1 Construct Validity

Construct validity concerns whether our chosen operational mea-
sures effectively address the main inquiries in our research. In our
case, the design of prompts used for solving programming problems
on various online judges might potentially limit LLMs’ ability to
understand programs. This limitation arises from the nature and
structure of the prompts, which may not fully represent the com-
plexity or diversity of real-world problem-solving scenarios. To
address this concern, we followed prior research and adhered to
OpenAr’s guidelines for prompt design (Subsection 4.4).

To report the results of our research questions, we used various
quantitative metrics such as success rate, acceptance rate, time effi-
ciency, and memory efficiency. These metrics are well-established
and verified by online judges. While not all platforms provide every
metric, this did not affect our study’s results, as most quantitative
metrics are commonly available across online judges.

8.2 Internal Validity

In this study, we focused exclusively on conversational LLMs. In-
stead of utilizing the more advanced paid versions of ChatGPT
and Gemini, such as GPT-4 based ChatGPT Plus!* and Gemini Ad-
vanced!, we opted for their free versions. We deliberately chose to
exclusively use open-source free conversational LLMs, ensuring the
study’s generalizability, given that Meta Al does not offer any paid
versions. However, this technological decision and assumption may
not fully represent the capabilities of LLMs, potentially impacting
the study’s generalizability and the accuracy of the conclusions
drawn from the experiment. To address this concern, we can refer
to the work of Hans et al. [13], where they compared the coding ca-
pabilities of GPT-3.5 with GPT-4 on LeetCode problems and found
negligible differences in their performance.

8.3 External Validity

Concerning external validity threats, the concern revolves around
the generalizability of findings derived from LLMs’ problem-solving
behavior. The non-deterministic nature [34] of LLMs, where its so-
lutions may vary for the same problem, poses a challenge to the
reliability and generalizability of results. Additionally, selecting
problems solely from LeetCode and Codeforces might limit the
representation of the entire spectrum of programming challenges,
potentially impacting the broader applicability of the study’s find-
ings beyond these specific platforms. This limitation could affect

4https://openai.com/index/chatgpt-plus
hitps://gemini.google.com/advanced
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the extent to which conclusions drawn from LLMs’ performance
on these platforms can be extrapolated to other problem sets or
programming environments.

8.4 Conclusion Validity

Regarding conclusion validity threats, the concerns center around
the connection between outcomes and the treatments administered
in the study. The dataset’s restricted number of problems raises a
potential concern about the solidity of statistical conclusions. This
limitation could impede the generalizability of findings because
a smaller dataset might not sufficiently reflect the wider problem
landscape. To address this, we have curated the problems based on
diverse problem categories, difficulty levels, and acceptance range
levels to compile a more comprehensive dataset.

9 Conclusion and Future Work

This study aimed to evaluate the impact of LLMs on Competitive
Programming across diverse platforms through a comprehensive
analysis. Our investigation unveiled a nuanced spectrum of results
across 15 categories, varying difficulty levels, and acceptance ranges.
Notably, LLMs demonstrated high accuracy on LeetCode (71.43%)
yet performed less optimally on Codeforces. While excelling in tests
on platforms like HackerRank, their performance in live Codeforces
contests was less favorable. Moreover, We conclude this study by
highlighting the need for the programming community to devise
measures to address the potential risks posed by LLMs to the estab-
lished norms of programming platforms and advise recruiters to
exercise caution when evaluating candidates.

For future exploration, efforts should aim to expand the range of
platforms and problem sets analyzed while incorporating a broader
selection of LLMs.
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